Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Viral Immunol ; 35(9): 586-596, 2022 11.
Article in English | MEDLINE | ID: covidwho-2313628

ABSTRACT

Infection caused by the Zika virus (ZIKV) can lead to serious neurological complications such as microcephaly in neonates. At present, no approved ZIKV vaccine is available, but few vaccine candidates are undergoing clinical trial. One major challenge faced is antibody-dependent enhancement (ADE) reaction that may provoke severe outcome in subsequent infection by ZIKV or other flaviviruses. Thus, more efforts should be dedicated to understanding ADE in designing a safe and effective vaccine to minimize the consequence of the potentially fatal infection's complications and to tackle potential ZIKV reemergence. This review discusses different types of ZIKV vaccine candidates that are currently underway in various stages of preclinical and clinical evaluations.


Subject(s)
Viral Vaccines , Zika Virus Infection , Zika Virus , Infant, Newborn , Humans , Antibody-Dependent Enhancement , Antibodies, Viral
4.
Med Arch ; 76(5): 383-386, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2202731

ABSTRACT

Background: Antibody dependent enhancement (ADE) is a unique immunopathological phenomenon in which pre-existing immunity to a viral agent accentuate disease severity upon secondary exposure. Multiple viruses have been shown to demsotrate ADE with no clear understanding of the underlying mechansims. Recently, with the emeregence of Sever acute respiratory syndrome-2 (SARS-CoV2) and the need for rapid vaccine prodcution, ADE have emerged as an important issue that need to be assessed. Objective: The aim of this study was to review ADE, proposed mechanisms and impact of ADE in the era of rapid SARS-CoV2 vaccine production. Methods: Review of existing published literature on ADE and SARS-CoV2 and identify facts that support or otherwise contradict the impact of ADE on SARS-CoV2 vaccination. Results: SARS-CoV2 demonstrate high genetic homology to other members of the Coronaviridae viral family and animal studies and studies on SARS-CoV, another member of the Coronaviridae have been shown to induce ADE. In addition sever SARS-CoV2 infection have been associated with high antibody titer. Yet vaccine efficacy studies and studies on breakthrough infection showed reduced severity in individual with preexisting immunity. Conclusion: Although evidence exist to support ADE in SARS-CoV2, multiple studies do not support its occurrence, indicating the need for more case control studies to understand the role of high antibody titer and disease severity and compare disease severity in patient with preexisting immunity vs naïve individuals.


Subject(s)
COVID-19 , Animals , COVID-19/prevention & control , SARS-CoV-2 , Antibody-Dependent Enhancement , RNA, Viral , Antibodies, Viral , Vaccine Development
5.
Front Immunol ; 13: 1008285, 2022.
Article in English | MEDLINE | ID: covidwho-2154728

ABSTRACT

Since immune system and internal environment in vivo are large and complex, the interpretation of the observed immune effect from the perspective of a single immune cell or antibody seems a little feeble. Many studies have shown that specific antibodies against " former" viruses have a reduced ability to neutralize "new" mutant strains. However, there is no comprehensive and clear view of whether there will be Antibody-dependent enhancement (ADE). We review the latest relevant studies, hoping to explain the ADE of SARS-CoV-2 infection sometimes observed in some patients.


Subject(s)
Antibody-Dependent Enhancement , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Viral
6.
Mol Immunol ; 152: 172-182, 2022 12.
Article in English | MEDLINE | ID: covidwho-2105610

ABSTRACT

Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Humans , Antibody-Dependent Enhancement , Complement C1q , Antigen-Antibody Complex , Antibodies, Viral
7.
Vaccine ; 40(49): 7141-7150, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2086812

ABSTRACT

The mass vaccination program has been actively promoted since the end of 2020. However, waning immunity, antibody-dependent enhancement (ADE), and increased transmissibility of variants make the herd immunity untenable and the implementation of dynamic zero-COVID policy challenging in China. To explore how long the vaccination program can prevent China at low resurgence risk, and how these factors affect the long-term trajectory of the COVID-19 epidemics, we developed a dynamic transmission model of COVID-19 incorporating vaccination and waning immunity, calibrated using the data of accumulative vaccine doses administered and the COVID-19 epidemic in 2020 in mainland China. The prediction suggests that the vaccination coverage with at least one dose reach 95.87%, and two doses reach 77.92% on 31 August 2021. However, despite the mass vaccination, randomly introducing infected cases in the post-vaccination period causes large outbreaks quickly with waning immunity, particularly for SARS-CoV-2 variants with higher transmissibility. The results showed that with the current vaccination program and 50% of the population wearing masks, mainland China can be protected at low resurgence risk until 8 January 2023. However, ADE and higher transmissibility for variants would significantly shorten the low-risk period by over 1 year. Furthermore, intermittent outbreaks can occur while the peak values of the subsequent outbreaks decrease, indicating that subsequent outbreaks boosted immunity in the population level, further indicating that follow-up vaccination programs can help mitigate or avoid the possible outbreaks. The findings revealed that the integrated effects of multiple factors: waning immunity, ADE, relaxed interventions, and higher variant transmissibility, make controlling COVID-19 challenging. We should prepare for a long struggle with COVID-19, and not entirely rely on the COVID-19 vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Antibody-Dependent Enhancement , COVID-19 Vaccines , Vaccination/methods , China/epidemiology
8.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2043780

ABSTRACT

Global vaccination against the SARS-CoV-2 virus has proved to be highly effective. However, the possibility of antibody-dependent enhancement of infection (ADE) upon vaccination remains underinvestigated. Here, we aimed to theoretically determine conditions for the occurrence of ADE in COVID-19. We developed a series of mathematical models of antibody response: model Ab-a model of antibody formation; model Cv-a model of infection spread in the body; and a complete model, which combines the two others. The models describe experimental data on SARS-CoV and SARS-CoV-2 infections in humans and cell cultures, including viral load dynamics, seroconversion times and antibody concentration kinetics. The modelling revealed that a significant proportion of macrophages can become infected only if they bind antibodies with high probability. Thus, a high probability of macrophage infection and a sufficient amount of pre-existing antibodies are necessary for the development of ADE in SARS-CoV-2 infection. However, from the point of view of the dynamics of pneumocyte infection, the two cases where the body has a high concentration of preexisting antibodies and a high probability of macrophage infection and where there is a low concentration of antibodies in the body and no macrophage infection are indistinguishable. This conclusion could explain the lack of confirmed ADE cases for COVID-19.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Antibodies, Viral , Antibody-Dependent Enhancement , Humans , SARS-CoV-2
9.
BMC Infect Dis ; 22(1): 742, 2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2038669

ABSTRACT

Coronavirus disease 2019 (COVID-19) continues to constitute an international public health emergency. Vaccination is a prospective approach to control this pandemic. However, apprehension about the safety of vaccines is a major obstacle to vaccination. Amongst health professionals, one evident concern is the risk of antibody-dependent enhancement (ADE), which may increase the severity of COVID-19. To explore whether ADE occurs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and increase confidence in the safety of vaccination, we conducted a meta-analysis to investigate the relationship between post-immune infection and disease severity from a population perspective. Databases, including PubMed, EMBASE, Chinese National Knowledge Infrastructure, SinoMed, Scopus, Science Direct, and Cochrane Library, were searched for articles on SARS-CoV-2 reinfection published until 25 October 2021. The papers were reviewed for methodological quality, and a random effects model was used to analyse the results. Heterogeneity was assessed using the I2 statistic. Publication bias was evaluated using a funnel plot and Egger's test. Eleven studies were included in the final meta-analysis. The pooled results indicated that initial infection and vaccination were protective factors against severe COVID-19 during post-immune infection (OR = 0.55, 95%CI = 0.31-0.98). A subgroup (post-immune infection after natural infection or vaccination) analysis showed similar results. Primary SARS-CoV-2 infection and vaccination provide adequate protection against severe clinical symptoms after post-immune infection. This finding demonstrates that SARS-CoV-2 may not trigger ADE at the population level.


Subject(s)
COVID-19 , Vaccines , Antibodies, Viral , Antibody-Dependent Enhancement , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccination
10.
Sci Rep ; 12(1): 15612, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-2036890

ABSTRACT

Many therapeutic antibodies (Abs) and mRNA vaccines, both targeting SARS-CoV-2 spike protein (S-protein), have been developed and approved in order to combat the ongoing COVID-19 pandemic. In consideration of these developments, a common concern has been the potential for Ab-dependent enhancement (ADE) of infection caused by inoculated or induced Abs. Although the preventive and therapeutic effects of these Abs are obvious, little attention has been paid to the influence of the remaining and dwindling anti-S-protein Abs in vivo. Here, we demonstrate that certain monoclonal Abs (mAbs) approved as therapeutic neutralizing anti-S-protein mAbs for human usage have the potential to cause ADE in a narrow range of Ab concentrations. Although sera collected from mRNA-vaccinated individuals exhibited neutralizing activity, some sera gradually exhibited dominance of ADE activity in a time-dependent manner. None of the sera examined exhibited neutralizing activity against infection with the Omicron strain. Rather, some ADE of Omicron infection was observed in some sera. These results suggest the possible emergence of adverse effects caused by these Abs in addition to the therapeutic or preventive effect.


Subject(s)
Antibody-Dependent Enhancement , COVID-19 Vaccines , COVID-19 , Immune Sera , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , COVID-19/immunology , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/immunology , Humans , Immunization, Passive , Pandemics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
11.
Viruses ; 14(8)2022 08 08.
Article in English | MEDLINE | ID: covidwho-2010305

ABSTRACT

The pandemics caused by emerging viruses such as severe acute respiratory syndrome coronavirus 2 result in severe disruptions to public health. Vaccines and antibody drugs play essential roles in the control and prevention of emerging infectious diseases. However, in contrast with the neutralizing antibodies (NAbs), sub- or non-NAbs may facilitate the virus to enter the cells and enhance viral infection, which is termed antibody-dependent enhancement (ADE). The ADE of most virus infections is mediated by the Fc receptors (FcRs) expressed on the myeloid cells, while others are developed by other mechanisms, such as complement receptor-mediated ADE. In this review, we comprehensively analyzed the characteristics of the viruses inducing FcRs-mediated ADE and the new molecular mechanisms of ADE involved in the virus entry, immune response, and transcription modulation, which will provide insights into viral pathogenicity and the development of safer vaccines and effective antibody drugs against the emerging viruses inducing ADE.


Subject(s)
COVID-19 , Virus Diseases , Viruses , Antibodies, Neutralizing , Antibodies, Viral , Antibody-Dependent Enhancement , Humans , Receptors, Fc , Virus Diseases/prevention & control
12.
Front Immunol ; 13: 889196, 2022.
Article in English | MEDLINE | ID: covidwho-1957157

ABSTRACT

The dynamics of host-virus interactions, and impairment of the host's immune surveillance by dengue virus (DENV) serotypes largely remain ambiguous. Several experimental and preclinical studies have demonstrated how the virus brings about severe disease by activating immune cells and other key elements of the inflammatory cascade. Plasmablasts are activated during primary and secondary infections, and play a determinative role in severe dengue. The cross-reactivity of DENV immune responses with other flaviviruses can have implications both for cross-protection and severity of disease. The consequences of a cross-reactivity between DENV and anti-SARS-CoV-2 responses are highly relevant in endemic areas. Here, we review the latest progress in the understanding of dengue immunopathogenesis and provide suggestions to the development of target strategies against dengue.


Subject(s)
COVID-19 , Dengue Virus , Dengue , Antibodies, Viral , Antibody-Dependent Enhancement , Humans
13.
Int Immunopharmacol ; 110: 108943, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1885845

ABSTRACT

Antibody-dependent enhancement (ADE) is a complex phenomenon mediated by antibodies, frequently pre-existing non-neutralizing or sub-neutralizing antibodies. In the course of infectious diseases, ADE may be responsible for worsening the clinical course of the disease by increasing the virulence of pathogens (ADE of infection) or enhancing disease severity (ADE of disease). Here we reviewed the mechanisms thought to be behind the ADE phenomenon and its potential relationship with COVID-19 severity. Since the early COVID-19 epidemics, ADE has been mentioned as a possible mechanism involved in severe COVID-19 disease and, later, as a potential risk in the case of infection after vaccination. However, current data do not support its role in disease severity, both after infection and reinfection.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Antibody-Dependent Enhancement , Humans , SARS-CoV-2
14.
Front Immunol ; 13: 905431, 2022.
Article in English | MEDLINE | ID: covidwho-1883914

ABSTRACT

The Zika virus (ZIKV) epidemic poses a substantial threat to the public, and the development of safe and effective vaccines is a demanding challenge. In this study, we constructed a kind of self-assembling nanovaccine which confers complete protection against ZIKV infection. The ZIKV envelop protein domain III (zEDIII) was presented on recombinant human heavy chain ferritin (rHF) to form the zEDIII-rHF nanoparticle. Immunization of mice with zEDIII-rHF nanoparticle in the absence of an adjuvant induced robust humoral and cellular immune responses. zEDIII-rHF vaccination conferred complete protection against lethal infection with ZIKV and eliminated pathological symptoms in the brain. Importantly, the zEDIII-rHF nanovaccine induced immune response did not cross-react with dengue virus-2, overcoming the antibody-dependent enhancement (ADE) problem that is a safety concern for ZIKV vaccine development. Our constructed zEDIII-rHF nanovaccine, with superior protective performance and avoidance of ADE, provides an effective and safe vaccine candidate against ZIKV.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Antibodies, Viral , Antibody-Dependent Enhancement , Immunization , Mice
15.
Int J Mol Sci ; 23(11)2022 May 28.
Article in English | MEDLINE | ID: covidwho-1869637

ABSTRACT

Antibodies play a crucial role in the immune response, in fighting off pathogens as well as helping create strong immunological memory. Antibody-dependent enhancement (ADE) occurs when non-neutralising antibodies recognise and bind to a pathogen, but are unable to prevent infection, and is widely known and is reported as occurring in infection caused by several viruses. This narrative review explores the ADE phenomenon, its occurrence in viral infections and evaluates its role in infection by SARS-CoV-2 virus, which causes coronavirus disease 2019 (COVID-19). As of yet, there is no clear evidence of ADE in SARS-CoV-2, though this area is still subject to further study.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use , Antibody-Dependent Enhancement , Humans
16.
Microbiol Spectr ; 10(2): e0155321, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1759307

ABSTRACT

Antibody-dependent enhancement (ADE) of infection is generally known for many viruses. A potential risk of ADE in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has also been discussed since the beginning of the coronavirus disease 2019 (COVID-19) pandemic; however, clinical evidence of the presence of antibodies with ADE potential is limited. Here, we show that ADE antibodies are produced by SARS-CoV-2 infection and the ADE process can be mediated by at least two different host factors, Fcγ receptor (FcγR) and complement component C1q. Of 89 serum samples collected from acute or convalescent COVID-19 patients, 62.9% were found to be positive for SARS-CoV-2-specific IgG. FcγR- and/or C1q-mediated ADE were detected in 50% of the IgG-positive sera, whereas most of them showed neutralizing activity in the absence of FcγR and C1q. Importantly, ADE antibodies were found in 41.4% of the acute COVID-19 patients. Neutralizing activity was also detected in most of the IgG-positive sera, but it was counteracted by ADE in subneutralizing conditions in the presence of FcγR or C1q. Although the clinical importance of ADE needs to be further investigated with larger numbers of COVID-19 patient samples, our data suggest that SARS-CoV-2 utilizes multiple mechanisms of ADE. C1q-mediated ADE may particularly have a clinical impact since C1q is present at high concentrations in plasma and its receptors are ubiquitously expressed on the surfaces of many types of cells, including respiratory epithelial cells, which SARS-CoV-2 primarily infects. IMPORTANCE Potential risks of antibody-dependent enhancement (ADE) in the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been discussed and the proposed mechanism mostly depends on the Fc gamma receptor (FcγR). However, since FcγRs are exclusively expressed on immune cells, which are not primary targets of SARS-CoV-2, the clinical importance of ADE of SARS-CoV-2 infection remains controversial. Our study demonstrates that SARS-CoV-2 infection induces antibodies that increase SARS-CoV-2 infection through another ADE mechanism in which complement component C1q mediates the enhancement. Although neutralizing activity was also detected in the serum samples, it was counteracted by ADE in the presence of FcγR or C1q. Considering the ubiquity of C1q and its cellular receptors, C1q-mediated ADE may more likely occur in respiratory epithelial cells, which SARS-CoV-2 primarily infects. Our data highlight the importance of careful monitoring of the antibody properties in COVID-19 convalescent and vaccinated individuals.


Subject(s)
Antibody-Dependent Enhancement , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Complement C1q , Humans , Immunoglobulin G , Receptors, IgG , SARS-CoV-2
17.
J Basic Clin Physiol Pharmacol ; 33(1): 13-16, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-1613395

ABSTRACT

Antibody-dependent enhancement (ADE) can be seen in a variety of viruses. It has a deleterious impact on antibody treatment of viral infection. This effect was first discovered in the dengue virus, and it has since been discovered in the coronavirus. Over 213 million people have been affected by the rapid spread of the newly emerging coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). The new coronavirus offers a significant threat and has sparked widespread concern. ADE in dengue virus and other viruses are discussed with possible effect on COVID-19 treatment and vaccine development will need to consider this phenomenon to ensure it is mitigated and avoided altogether. In these case scenarios, the role of ADE and its clinical consequences remains to be explored for this newly detected virus.


Subject(s)
Antibody-Dependent Enhancement , COVID-19 Drug Treatment , COVID-19 , COVID-19/immunology , Humans
18.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: covidwho-1572660

ABSTRACT

Patients with COVID-19 generally raise antibodies against SARS-CoV-2 following infection, and the antibody level is positively correlated to the severity of disease. Whether the viral antibodies exacerbate COVID-19 through antibody-dependent enhancement (ADE) is still not fully understood. Here, we conducted in vitro assessment of whether convalescent serum enhanced SARS-CoV-2 infection or induced excessive immune responses in immune cells. Our data revealed that SARS-CoV-2 infection of primary B cells, macrophages and monocytes, which express variable levels of FcγR, could be enhanced by convalescent serum from COVID-19 patients. We also determined the factors associated with ADE, and found which showed a time-dependent but not viral-dose dependent manner. Furthermore, the ADE effect is not associated with the neutralizing titer or RBD antibody level when testing serum samples collected from different patients. However, it is higher in a medium level than low or high dilutions in a given sample that showed ADE effect, which is similar to dengue. Finally, we demonstrated more viral genes or dysregulated host immune gene expression under ADE conditions compared to the no-serum infection group. Collectively, our study provides insight into the understanding of an association of high viral antibody titer and severe lung pathology in severe patients with COVID-19.


Subject(s)
Antibody-Dependent Enhancement/immunology , Leukocytes/virology , SARS-CoV-2/pathogenicity , COVID-19/immunology , Cells, Cultured , Gene Expression Profiling , Humans , Immune Sera/immunology , Leukocytes/metabolism , Receptors, IgG/metabolism , Virus Replication/immunology
19.
Sci Rep ; 11(1): 23713, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1565736

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many vaccine trials have been initiated. An important goal of vaccination is the development of neutralizing antibody (Ab) against SARS-CoV-2. However, the possible induction of antibody-dependent enhancement (ADE) of infection, which is known for other coronaviruses and dengue virus infections, is a particular concern in vaccine development. Here, we demonstrated that human iPS cell-derived, immortalized, and ACE2- and TMPRSS2-expressing myeloid cell lines are useful as host cells for SARS-CoV-2 infection. The established cell lines were cloned and screened based on their function in terms of susceptibility to SARS-CoV-2-infection or IL-6 productivity. Using the resulting K-ML2 (AT) clone 35 for SARS-CoV-2-infection or its subclone 35-40 for IL-6 productivity, it was possible to evaluate the potential of sera from severe COVID-19 patients to cause ADE and to stimulate IL-6 production upon infection with SARS-CoV-2.


Subject(s)
Antibody-Dependent Enhancement , COVID-19/immunology , COVID-19/metabolism , Interleukin-6/metabolism , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Humans , Myeloid Cells/immunology , Myeloid Cells/metabolism , Patients , Serine Endopeptidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL